A maximum likelihood estimator for long-range persistence
نویسندگان
چکیده
A wide variety of processes are thought to show ‘‘long-range persistence’’, specifically an autocorrelation function with power-law decay. A variety of methods have been proposed to quantify this power-law decay, and weather and climate systems, among others, have been claimed to show long-range persistence. In this paper we present a new approach, defining and illustrating a new maximum likelihood estimator of the persistence exponent H. This method provides estimates of H at each time scale considered, as well as meaningful uncertainty estimates. Several independent realisations of processes with a known degree of long-range persistence are used to test the accuracy of the new estimator in terms of spread and bias. The persistence exponent of temperature data is estimated and the problems of using observational data are addressed. r 2005 Elsevier B.V. All rights reserved. PACS: 02.50. r; 72.70.+m; 74.40.+k; 02.70.Lq
منابع مشابه
Estimating a Bounded Normal Mean Relative to Squared Error Loss Function
Let be a random sample from a normal distribution with unknown mean and known variance The usual estimator of the mean, i.e., sample mean is the maximum likelihood estimator which under squared error loss function is minimax and admissible estimator. In many practical situations, is known in advance to lie in an interval, say for some In this case, the maximum likelihood estimator...
متن کاملEstimating a Bounded Normal Mean Under the LINEX Loss Function
Let X be a random variable from a normal distribution with unknown mean θ and known variance σ2. In many practical situations, θ is known in advance to lie in an interval, say [−m,m], for some m > 0. As the usual estimator of θ, i.e., X under the LINEX loss function is inadmissible, finding some competitors for X becomes worthwhile. The only study in the literature considered the problem of min...
متن کاملQUASI-MAXIMUM LIKELIHOOD ESTIMATION FOR A CLASS OF CONTINUOUS-TIME LONG-MEMORY PROCESSES By Henghsiu Tsai and K. S. Chan Academia Sinica and University of Iowa
Tsai and Chan (2003) has recently introduced the Continuous-time AutoRegressive Fractionally Integrated Moving-Average (CARFIMA) models useful for studying long-memory data. We consider the estimation of the CARFIMA models with discrete-time data by maximizing the Whittle likelihood. We show that the quasimaximum likelihood estimator is asymptotically normal and efficient. Finite-sample propert...
متن کاملA New Approach to Self-Localization for Mobile Robots Using Sensor Data Fusion
This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such ...
متن کاملJackknifed Liu-type Estimator in Poisson Regression Model
The Liu estimator has consistently been demonstrated to be an attractive shrinkage method for reducing the effects of multicollinearity. The Poisson regression model is a well-known model in applications when the response variable consists of count data. However, it is known that multicollinearity negatively affects the variance of the maximum likelihood estimator (MLE) of the Poisson regressio...
متن کامل